EXERCISES FOR FINITE GROUP REPRESENTATIONS

CHARLES REZK

Here are some exercises on representations of finite groups.

(1) Let $\phi \colon \mathbb{Z}_3 \to GL_2(\mathbb{C})$ be defined by

$$\phi_{[k]} := A^k, \qquad A = \begin{bmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{bmatrix}.$$

Show that ϕ is not an irreducible complex representation.

- (2) The formula of the previous problem actually defines a homomorphism $\phi': \mathbb{Z}_3 \to GL_2(\mathbb{R})$. Show that ϕ' is an irreducible real representation (i.e., that the only invariant vector subspaces of \mathbb{R}^2 are 0 and \mathbb{R}^2).
- (3) Let $\phi, \psi: G \to GL_1(\mathbb{C})$ be 1-dimensional representations. Show that $\phi \sim \psi$ iff $\phi = \psi$.
- (4) Let $\phi: G \to GL(V)$ be a representation, and let $\theta: G \to GL(V)$ be a homomorphism. Define $V^{\theta} := \{ v \in V \mid \phi_g(v) = \theta_g(v) \text{ for all } g \in G \}$. Show that V^{θ} is a *G*-invariant subspace of the representation ϕ .
- (5) Show that if $\phi: G \to GL_n(\mathbb{C})$ is a representation, then so is $\psi: G \to GL_n(\mathbb{C})$, defined by $\psi_g := \overline{\phi_g}$, the matrix obtained by taking complex conjugates of the entries. Give an example of a ϕ so that $\phi \not\sim \psi$.
- (6) Show that there is a representation $\phi: D_4 \to GL_3(\mathbb{C})$ with

$$\phi_r = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}, \qquad \phi_j = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Determine all the invariant subspaces of this representation, and show that ϕ is equivalent to a direct sum of two of its non-trivial invariant subspaces.

(7) There is a representation $\phi: A_4 \to GL_3(\mathbb{C})$ with

$$\phi_{(1\ 2\ 3)} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \qquad \phi_{(1\ 2)(3\ 4)} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}.$$

Show that ϕ is irreducible.

- (8) Let $\phi: G \to GL(V)$ be a representation of a finite group of dimension d, with character χ . Show that if o(g) = 2, then $\chi(g) \in \{-d, -d+2, \dots, d-2, d\}$.
- (9) Let $\phi: G \to GL(V)$ be a representation of a finite group of dimension d, with character χ . Show that $\|\chi(g)\| \leq d$ for any $g \in G$, with $\chi(g) = d$ iff $g \in \text{Ker}(\phi)$. (Hint: use the triangle inequality for complex numbers.)
- (10) Let $\phi: G \to GL(V)$ be an *irreducible* representation of a finite group of dimension d, with character χ . Show that if $a \in Z(G)$ (the center of G), then $\|\chi(a)\| = d$, and that $\chi(ga) = \chi(g)\chi(a)/d$ for any $g \in G$. (Hint: use Schur's lemma.)
- (11) Show that there are exactly *n* distinct irreducible representations of \mathbb{Z}_n .
- (12) Let G, H be finite abelian groups. Show that there is a bijection $\operatorname{Hom}(G \times H, \mathbb{C}^{\times}) \approx \operatorname{Hom}(G, \mathbb{C}^{\times}) \times \operatorname{Hom}(H, \mathbb{C}^{\times})$ (where $\operatorname{Hom}(G, K)$ = the set of group homomorphisms from G to K).

Date: February 25, 2021.

- (13) Compute the character table for $\mathbb{Z}_3 \times \mathbb{Z}_3$, and give your reasoning.
- (14) Compute the character table for A_4 , and give your reasoning. Let $\rho' \colon A_4 \to GL_4(\mathbb{C})$ be the restriction of the regular representation of S_4 to the subgroup A_4 . Determine the multiplicities of the irreducible A_4 -representations in ρ' .
- (15) Compute the character table for Q_8 , and give your reasoning. Show that there is a representation $\phi: Q_8 \to GL_4(\mathbb{C})$ with

$$\phi_i = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \qquad \phi_j = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}.$$

Determine the multiplicities of the irreducible Q_8 -representations in ϕ .

- (16) Explain how to deduce the character table for S_4 . (The table is shown in the notes.)
- (17) Explain how each irreducible S_4 representation splits into a direct sum of irreducible A_4 representations. (Use the character table for A_4 computed above.)
- (18) Consider the 3 dimensional complex representation of S_4 , coming from the fact that S_4 is isomorphic to the subgroup $G \leq SO(3) \leq GL_3(\mathbb{R}) \leq GL_3(\mathbb{C})$. Determine the character of this representation, and identify its decomposition as a direct sum of irreducible complex representations.
- (19) Let $H \leq G$. Show that if $\chi \in L^c(H)$ is the trivial character $(\chi(h) = 1 \text{ for all } h \in H)$, then $\chi' := \operatorname{Ind}_H^G \chi$ is the character of the permutation representation $\rho \colon G \to GL(\mathbb{C}(G/H))$ of the left-coset action by G on G/H.
- (20) (40 points) G is a finite group with 7 conjugacy classes. The characters χ_1, \ldots, χ_7 of its irreducible complex representations are described by the following table.

	g_1	g_2	g_3	g_4	g_5	g_6	g_7
χ_1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	-1	-1
χ_3	1	1	1	-1	-1	1	-1
χ_4	1	1	1	$^{-1}$	-1	-1	1
χ_5	2	2	-2	0	0	0	0
χ_6	2	-2	0	-1 0 $i\sqrt{2}$	$-i\sqrt{2}$	0	0
χ_7	2	-2	0	$-i\sqrt{2}$	$i\sqrt{2}$	0	0

Here g_1, \ldots, g_7 are representatives of each of the conjugacy classes. Determine: (a) The order of G.

- (b) The size of each of the seven conjugacy classes of G.
- (c) The dimensions of each of the irreducible representations of G.
- (d) The structure of the quotient group G/[G,G], where $[G,G] = \langle aba^{-1}b^{-1}, a, b \in G \rangle$ is the commutator subgroup.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL *Email address:* rezk@math.uiuc.edu