EXERCISES FOR FINITE GROUP REPRESENTATIONS

CHARLES REZK

Here are some exercises on representations of finite groups.
(1) Let $\phi: \mathbb{Z}_{3} \rightarrow G L_{2}(\mathbb{C})$ be defined by

$$
\phi_{[k]}:=A^{k}, \quad A=\left[\begin{array}{cc}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right] .
$$

Show that ϕ is not an irreducible complex representation.
(2) The formula of the previous problem actually defines a homomorphism $\phi^{\prime}: \mathbb{Z}_{3} \rightarrow$ $G L_{2}(\mathbb{R})$. Show that ϕ^{\prime} is an irreducible real representation (i.e., that the only invariant vector subspaces of \mathbb{R}^{2} are 0 and \mathbb{R}^{2}).
(3) Let $\phi, \psi: G \rightarrow G L_{1}(\mathbb{C})$ be 1-dimensional representations. Show that $\phi \sim \psi$ iff $\phi=\psi$.
(4) Let $\phi: G \rightarrow G L(V)$ be a representation, and let $\theta: G \rightarrow G L(V)$ be a homomorphism. Define $V^{\theta}:=\left\{v \in V \mid \phi_{g}(v)=\theta_{g}(v)\right.$ for all $\left.g \in G\right\}$. Show that V^{θ} is a G-invariant subspace of the representation ϕ.
(5) Show that if $\phi: G \rightarrow G L_{n}(\mathbb{C})$ is a representation, then so is $\psi: G \rightarrow G L_{n}(\mathbb{C})$, defined by $\psi_{g}:=\overline{\phi_{g}}$, the matrix obtained by taking complex conjugates of the entries. Give an example of a ϕ so that $\phi \nsim \psi$.
(6) Show that there is a representation $\phi: D_{4} \rightarrow G L_{3}(\mathbb{C})$ with

$$
\phi_{r}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right], \quad \phi_{j}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] .
$$

Determine all the invariant subspaces of this representation, and show that ϕ is equivalent to a direct sum of two of its non-trivial invariant subspaces.
(7) There is a representation $\phi: A_{4} \rightarrow G L_{3}(\mathbb{C})$ with

$$
\phi_{(123)}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad \phi_{(12)(34)}=\left[\begin{array}{lll}
0 & 1 & -1 \\
1 & 0 & -1 \\
0 & 0 & -1
\end{array}\right] .
$$

Show that ϕ is irreducible.
(8) Let $\phi: G \rightarrow G L(V)$ be a representation of a finite group of dimension d, with character χ. Show that if $o(g)=2$, then $\chi(g) \in\{-d,-d+2, \ldots, d-2, d\}$.
(9) Let $\phi: G \rightarrow G L(V)$ be a representation of a finite group of dimension d, with character χ. Show that $\|\chi(g)\| \leq d$ for any $g \in G$, with $\chi(g)=d$ iff $g \in \operatorname{Ker}(\phi)$. (Hint: use the triangle inequality for complex numbers.)
(10) Let $\phi: G \rightarrow G L(V)$ be an irreducible representation of a finite group of dimension d, with character χ. Show that if $a \in Z(G)$ (the center of G), then $\|\chi(a)\|=d$, and that $\chi(g a)=\chi(g) \chi(a) / d$ for any $g \in G$. (Hint: use Schur's lemma.)
(11) Show that there are exactly n distinct irreducible representations of \mathbb{Z}_{n}.
(12) Let G, H be finite abelian groups. Show that there is a bijection $\operatorname{Hom}\left(G \times H, \mathbb{C}^{\times}\right) \approx$ $\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right) \times \operatorname{Hom}\left(H, \mathbb{C}^{\times}\right)($where $\operatorname{Hom}(G, K)=$ the set of group homomorphisms from G to $K)$.

[^0](13) Compute the character table for $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, and give your reasoning.
(14) Compute the character table for A_{4}, and give your reasoning. Let $\rho^{\prime}: A_{4} \rightarrow G L_{4}(\mathbb{C})$ be the restriction of the regular representation of S_{4} to the subgroup A_{4}. Determine the multiplicities of the irreducible A_{4}-representations in ρ^{\prime}.
(15) Compute the character table for Q_{8}, and give your reasoning. Show that there is a representation $\phi: Q_{8} \rightarrow G L_{4}(\mathbb{C})$ with
\[

\phi_{i}=\left[$$
\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}
$$\right], \quad \phi_{j}=\left[$$
\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}
$$\right] .
\]

Determine the multiplicities of the irreducible Q_{8}-representations in ϕ.
(16) Explain how to deduce the character table for S_{4}. (The table is shown in the notes.)
(17) Explain how each irreducible S_{4} representation splits into a direct sum of irreducible A_{4} representations. (Use the character table for A_{4} computed above.)
(18) Consider the 3 dimensional complex representation of S_{4}, coming from the fact that S_{4} is isomorphic to the subgroup $G \leq S O(3) \leq G L_{3}(\mathbb{R}) \leq G L_{3}(\mathbb{C})$. Determine the character of this representation, and identify its decomposition as a direct sum of irreducible complex representations.
(19) Let $H \leq G$. Show that if $\chi \in L^{c}(H)$ is the trivial character $(\chi(h)=1$ for all $h \in$ $H)$, then $\chi^{\prime}:=\operatorname{Ind}_{H}^{G} \chi$ is the character of the permutation representation $\rho: G \rightarrow$ $G L(\mathbb{C}(G / H))$ of the left-coset action by G on G / H.
(20) (40 points) G is a finite group with 7 conjugacy classes. The characters $\chi_{1}, \ldots, \chi_{7}$ of its irreducible complex representations are described by the following table.

	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	-1	-1
χ_{3}	1	1	1	-1	-1	1	-1
χ_{4}	1	1	1	-1	-1	-1	1
χ_{5}	2	2	-2	0	0	0	0
χ_{6}	2	-2	0	$i \sqrt{2}$	$-i \sqrt{2}$	0	0
χ_{7}	2	-2	0	$-i \sqrt{2}$	$i \sqrt{2}$	0	0

Here g_{1}, \ldots, g_{7} are representatives of each of the conjugacy classes. Determine:
(a) The order of G.
(b) The size of each of the seven conjugacy classes of G.
(c) The dimensions of each of the irreducible representations of G.
(d) The structure of the quotient group $G /[G, G]$, where $[G, G]=\left\langle a b a^{-1} b^{-1}, a, b \in G\right\rangle$ is the commutator subgroup.

[^0]: Date: February 25, 2021.

